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RISK AVERSION

This chapter intends to model the basic concept of
preference in face of risk. The aim is to develop a system-
atic way to describe and predict (economic and �nanciel)
choices made under uncertainty. Obviously even if it is
inattainable to produce models that can predict human
behaviour for every individual in every circumstances,
our models can still make general claims on "invariants"
about such behaviour and make market previsions that
are very useful.

1 The expected utility hypothesis

Get back to the Sempronius problem. His �nal wealth,
when he trusts only one ship, can be described by a lot-
tery ex. With probability 1=2; x is equal to 8000 ducats
and with probability 1=2 it is equal to 4000 ducats. The
mean of this lottery is 6000 ducats. Instead of trust-
ing one boat, he now trusts equal proportion of his 4000
ducats in two ships which follow idependant but equally
dangerous routes. This behaviour corresponds to the fa-
mous "adage" according to which it is better not to put
all eggs in the same basket!

In this situation what are the di¤erent possible
events? The two boats are safe, only one boat sinks, two
boats sink. As the rouites are independant, the proba-
bility of these events are respectively : 1=2� 1=2 = 1=4;
2� 1=2 �1=2 = 1=2; 1=2� 1=2 = 1=4:

The lottery is then ey where y = 8000 with probability
1=4; 6000 with probability 1=4; and 4000 with probability
1=4: This lottery has obviously the same expectation as
the initial one. However, Sempronius prefers the second
solution because he has the intuition that doing so he
reduces the risk. Indeed if we compare the probability
densities we motice that the second distribution is ob-
tained by reducing the probabilities of "extremal events"
and increasing the probability of "central one".

Computing the expectation of the lottery is not a
good measure of the "value" since Sempronius prefers
unambiguously the second one although they have the
same expectation.

Because reducing risk is valuable, this means that,
by reference to the mean value 6000; the negative e¤ect
-loosing 2000 (4000 = 6000� 2000)- is not compensated,
in the mind of Sempronius, by the positive one -gaining
2000 (8000 = 6000 + 2000) is . These two events (loose
or gain 2000) have the same probability either with ex orey: But with ey this probability is lower so that the global

e¤ect (which is negative since loosing is not compensated
by gaining) is less harmfull.

This means that the value of a lottery is non linear
with respect to wealth.

What other mesure than expactation can we hence
propose. The idea is very simple. It is called the "ex-
pected utility hypothesis".

The hypothesis we make is that a decision maker
evaluates a lottery on his wealth through its expected
utility. Instead of computing the expectation of mone-
tary outcomes, individuals use the expectation of some
function (utility) of this wealth. In other words, people
does not extract welfare directly from wealth, they rather
extract utility from goods that can be purchased with
this wealth. The expected utility hypothesis says that
there is a non linear relationship between wealth and the
utility of comsuming goods that are a¤ordable with this
wealth. In mathematical words, a decision maker uses an
increasing fuction u to compare lotteries. To compare ey
and ex, he compares E(u(ex)) and E(u(ey)):
De�nition 1 expected utility (EU)assumption. To com-
pare two lotteries on wealth, a decision maker uses a con-
tinuous increasing function u. ex is prefered to ey if and
only if E(u(ex)) � E(u(ey)):

This hypothesis can be rationalized through an ax-
iomatic approach (which de�nes a set of assumtions on
behaviour that lead to the expected utility model). a.
This axiomatization approach is beyon the aim of this
courses. The interseted readers can refer to the �rst
chapter of Gollier�s book "The Economics of Risk and
Time".

In this course we deliberately use the EU model.

2 The preference for diversi�cation

What does preference for diversi�cation means? Sup-
pose, as we have assumed in the previous section, that
the value of a lottery is given by the expectation of some
function u of its payments.

Let e� the basic "Bernoulli" variable : with probabil-
ity p; e�p is equal to 1 and with probability 1�p it is equal
to 0: Take two such independant variables e�1 and e�2: In
some sense the e�i is a variable indicating the result of a
very simple lottery. In the example above, e�i is equal to
1 if the boat arrives to the port, 0 if it sunks on her trip.
The decision maker can put his whole wealth in one boat

aThis has been done by Von Neumann and Morgenstern and others
who have proved that the expected utility model is the one that
satis�es an axiom of independence.
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(his total wealth will be w+xe�1) or share it in two boats
(the total wealth will be w + x

2
e�1 + x

2
e�2 ).

If the decision maker �nds more valuable to share,
we say he has preference for diversi�cation.

De�nition 2 The utility function u exhibits preference
for diversi�cation if, for all sure wealth w; for all level
x of risky wealth the decision maker pefers splitting the
risky wealth :

E
h
u
�
w +

x

2
e�1 + x

2
e�2�i � E hu�w + xe�1�i

Developping expectations gives :

p2u(w + x) + 2p(1� p)u
�
w +

x

2

�
+ (1� p)2u(w)

� pu(w + x) + (1� p)u(w)

As this must hold for all p, this gives :

u
�
w +

x

2

�
� u(w) � u(w + x)� u

�
w +

x

2

�
This inequality shows that the loss of x2 has not the

same weight on "utility" according to the level of ini-
tial wealth. It is more painful to loose them than it is
bene�cial to gain them.

It is easy to see that preference for diversi�cation is
linked to the concavity of the utility function u:

Proposition 3 The utility function u exhibits prefer-
ence for diversi�cation, if and only if u is concave :

8 x; y 2 R; 8� 2 [0; 1] ;
u(�x+ (1� �)y) � �u(x) + (1� �)u(y)

3 Risk aversion

De�nition 4 We say that a decision maker is risk-
averse if and only if he dislikes zero mean lotteries, that
is he does not want to take a risk with zero mean : 8ex;
s.t. E(ex) = 0;8w E[u(w + ex)] � u(w)
Remark 5 This obviously is equivalent to say that he
does not want to take any risk with negative mean : in-
deed, if ez is a lottery with negative mean, then we have :
E [u(w + ez)] = Eu(w + E(ez) + ez � E(ez))

� u(w + E(ez)) � u(w):

A risk averse decision maker will hence accept to take
a risk if the mean of the lottery is su¢ ciently large and
positive. Similarly, a risk averse individual is ready to
pay to avoid a zero mean risk. The maximum amount he
is ready to pay is called the risk-premium.

De�nition 6 Given a zero mean risk, ex; the risk pre-
mium �u(ex) for a risk averse individual is de�ned by :

E [u(w + ex)] = u(w ��u(ex))
Risk aversion is linked to the concavity of u:

Proposition 7 A decision maker is risk averse if and
only if u is concave..

Proof. This can be easily shown by writing that the
de�nition of risk aversion is equivallent to 8ey; E[u(ey)] �
u(E(ey))

Risk aversion and preference for diversi�cation are
hence equivallent in the framework of expected utility
model.

4 The measure of risk aversion

The pupose of this section is to try to give a consistent
de�nition to "more" or "less" risk aversion.

4.1 degrees of risk aversion

When can we say that a decision maker is "more risk
averse" than another one? We know that a necessary
condition for a risk to be accepted by a risk averse de-
cision maker is that it has a strictly positive mean. A
natural de�nition could then be :

De�nition 8 An invividual (entailed with a utility func-
tion v) is more risk averse than an individual (with a
function u) if and only if, whenever u refuses a risk ez,
then v refuses too.

8z; E(u(w + ez)) < u(w) =) E(v(w + ez)) < v(w)
Take two such individuals. Take the real (increasing)

function � de�ned on the image of u (that is on u(R));
by � = v �u�1: Take any lottery z , and set ey = u(w+ ez)
we have : E(v(w + ez)) = E [�(u(w + ez))] = E [�(ey)]

Suppose E(u(w + ez)) < u(w); that is E(ey) < u(w);
Hence, because v is more risk averse, E [�(ey)] < �(u(w))

Hence the de�nition amounts to say : 8ey and c such
that E(ey) < c; E [�(ey)] < �(c)

which implies 8ey E [�(ey)] � �(E(ey)); :which means
that � is concave (if it were not the case there would exist
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ey0 such that E [�(ey0)] > �(E(ey0)): and then c, such that
�(E(ey0)) < �(c) < E [�(ey0)])

Conversely, if � = v �u�1 is concave, it is easy to see
that v is more risk-averse tha u:

Proposition 9 An invividual (entailed with a utility
function v) is more risk averse than an individual (with
a function u) if and only if v is a concave transformation
of u : v = � � u; with � concave.

It is then easy to see that the risk premium of a
more risk averse decision maker is larger that the one
of a less one, that is �v(ex) � �u(ex) for all zero mean
risk ex: Indeed, as v = � � u; we have v(w � �v(ex)) =
��u(w��v(ex)) = E [� � u(w + ex)] � � [E(u(w + ex))] =
�(u(w ��u(ex)) = v(w ��u(ex))
4.2 di¤erentiable case and index of absolute risk

aversion

Suppose that u and v are twice continuously di¤eren-
tiable. In such a case concavity of u and v are equivalent
to say that v" and u" are negative functions. A direct
calculus gives : v0 = (�0 � u)u0 and v00 = (�00 � u)(u0)2 +
(�0 � u)u00

that is �v00
v0 = �u00

u0 + �(�00�u)
(�0�u) u

0: As (by concavity)

�00 � 0; �v00v0 � �u00
u0 : This motivates the following de�ni-

tion.

De�nition 10 For a decision maker entailed with a util-
ity function u, the Absolute Risk Aversion Index Iu(w)
at the level of wealth w is de�ned by Iu(w) =

�u00(w)
u0(w)

Proposition 11 The following properties are equival-
lent

(i) v is more risk averse than u

(ii) v = � � u; with � concave

(iii) �v(ex) � �u(ex) for all zero mean risk ex
(iv) �u00(w)

u0(w) � �v00(w)
v0(w) ; that is Iu(w) � Iv(w) for all w, if

we restrict to twice continuously di¤erentiable func-
tions.

4.3 Small risks and Arrow-Pratt approximation

It is interesting to examine the behaviour of risk pre-
mium for small risk and twice continuously di¤eren-
tiable functions u. Fix a zero mean lottery ex and setey = kex: The risk premium associated with ey is de�ned
by E [u(w + ey)] = u(w � �u(ey)): For ex �xed we can

examine the behaviour of the risk premium for small
values of k: Set g(k) = �u(ey) = �u(kex): We have
g(k) = g(0) + kg0(0) + k2

2 g
00(0) + o(k2):

Obviously g(0) = 0 : when there is no risk there is no
risk premium!. To compute g0(0); we use an implicit func-
tion argument. Consider the identity E [u(w + kex)] =
u(w � g(k)) which is true (by de�nition of the risk pre-
mium) for all k: Di¤erentiating both sides with respect
to k gives : E(exu0(w + kex)) = �g0(k)u0(w � g(k)).
For k = 0 this gives E(ex) = �g0(0): As E(ex) = 0;

this implies g0(0) = 0: Risk aversion is a second order
phenomenon (for continuously di¤erentiable functions).
The risk premium is nul at a �rst order approxima-
tion. Di¤erentiating twice gives E(ex2u00(w + kex)) =
�g00(k)u0(w � g(k)) � (g0(k))2u00(w � g(k)): For k = 0

this gives g00(0) = �u00(w)
u0(w) E(ex2) = Iu(w)E(ex2)

Proposition 12 For a twice continuously di¤erntiable
function u; the Arrow Pratt approximation of the risk
premium is :

�u(ey) � 1
2Iu(w) var(ey) + o(var(ey))

5 Decreasing risk aversion

We are now interested in determining haow the risk pre-
mium is a¤ected by a change in initial wealth w: The
intuition, and some empirical evidences, seems to imply
that wealthier people bear more easily risk than poorer.
The risk premium for a given zer mean risk is decreasing
with wealth.

For all given w and zero mean risk ex; The risk pre-
mium �u(ex;w) veri�es :

E(u(w + ex)) = u(w ��(ex;w))
Di¤erentiating with respect to w gives :

E(u0(w + ex)) = u0(w ��u(ex;w))(1��0w(ex;w))
�0w(ex;w)u0(w��u(ex;w)) = u0(w��u(ex;w))�E(u0(w+ex))

This means that the risk premium is decreasing with
w if (for all ex and w) :

E(�u0(w + ex)) � �u0(w ��u(ex;w))
As the function �u0 is increasing, this implies

that �u0 is concave, i.e u0 convex.. Indeed �u0(w �
�u(ex;w)) � �u0(w) = �u0(E(w + x)):
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De�nition 13 We say that a risk-averse decision maker
is "prudent" if u0 is a convex decreasing function.

This de�nition is somewhat mysterious, but we shall
see in the sequel that this indeed corresponds to a pru-
dent behaviour.

Proposition 14 Only prudent decision makers have de-
creasing risk premium with initial wealth.

Decreasing risk aversion implies however more. In-
deed E(�u0(w + ex)) � �u0(w � �u(ex;w)) means that
the risk premium associated with the "utility function"
v = �u0 is higher than the one for u: That means that
�u0 is more concave than u:

With the previous propositions this is equivalent to
have �u000

u00 � �u00
u0 :

Take Iu(w) =
�u00(w)
u0(w) : I

0
u(w) =

�u000u0+u002
u02 : As u0 is

positive, I 0u(w) � 0 if and only if �u
000

u00 � �u00
u0 : We have

hence the following proposition :

Proposition 15 The risk premium is decreasing with
wealth if and only if the index of absolute risk aversion
is decreasing with wealth.

5.1 Aversion for downside risk

Consider a variation of the problem of Sempronius. Sup-
pose that the value itself of x (the foreign wealth) are
not sure. For instance the prices are subject to variations
due to changes in demand. The lottery ey1 is then de-
�ned in the following way : with probability12 the boat
perishes and the cargo is lost , y1 = w and with probabil-
ity 1

2 , when the boat succeeds, the wealth is (with equal
probability) either w + x� � or w + x+ �:

We have obviously

E(ey1) = 1

2
w+

1

2
(
1

2
(w+ x� �)+ 1

2
(w+ x+ �)) = w+

1

2
x

Suppose now that the uncertainty (the noise) a¤ects
the bad state of nature. The lottery ey2, is such that with
probability 1

2 the wealth is ether (with equal probability)
w� � or w+ �:, and with probability 1

2 it is equal to w+x.
We have also E(ey2) = w + 1

2x:

It is easy to see that the variances are also identical
: var(ey1) = var(ey2) .

Th intution suggests that Sempronius would prefer
the �rst one : he dislikes "downside" risk, that is risk
beared by the bad states of nature.

We have

E(u(ey1)� E(u(ey2) = 1

2
(u(w)� E (u(w +e�))) + 1

2
(E (u(w + x+e�))� u(w + x))

=
1

2

w+xR
w

(u0(s)� E(u0(s+e�))ds
E(u(ey1) � E(u(ey2) for all x and w implies that for

all s and all � , u0(s) � u0(s��)+u0(s+�)
2 : With the same

proof as for proposition 1, this is equivalent to u0 convex.

Proposition 16 A decision maker is averse for down-
side risk if and only if u0 is a decreasing positive and
convex function.

Prudence and downside risk aversion are equivallent
concepts.

6 Classical utility functions

In this section we give some families of utility functions
that are commonly used in Economics and Finance. Ob-
viuouly, assuming that the decision maker has a speci�c
utility function is rather restrictive. This is done to ob-
tain tractable solutions to many problems. But we have
to keep in mind that some of these are closely related to
the choice of a narrow class of utility functions.

6.1 Quadratic

The �rst family is the quadratic set :

De�nition 17 Quadratic function : u(w) = w � 1
2aw

2

This function gives for a lottery ez E (u(ez)) = E(ez)�
1
2aE(ez2) = E(ez)� 1

2a

�
var(ez) + E(ez)2�

That is : E (u(ez)) = u(E(ez)) � 1
2avar(ez); which

amounts to mean-variance models : for two lotteries hav-
ing the same mean the decision maker will choose the one
with the smaller variance.

The main drawback of this kind of utility function is
the fact that it does not ful�ll the decreasing risk aversion
hypothesis.

Indeed :

I(w) =
1

a� w
The eversion index is increasing with wealth. For

this main reason, quadratic functions are no more used
to model decision behaviour in front of risk.

6.2 CARA

CARA (Constant absolute risk-aversion) function are
those for which Iu(w) is constant.
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De�nition 18 The family of CARA functions is the set
of exponential function :

u(w) = � 1
� exp(��w); with � � 0:

The index of absolute risk aversion is Iu(w) = �;

constant.

This function is largely used for several reasons. One
is very interesting. When the lottery ez is normally dis-
tributed with mean m and a variance �2; we have (proof
let to the reader) :

E(u(ez)) = u(m� 1
2
��2)

That is to say that the risk premium is exactly 1
2��

2.
The Arrow-Pratt Approximation is exact.

6.3 Other harmonic absolute risk aversion
functions.

We can easily obtain decrasing absolute risk aversion
functions by taking Iu(w) =

�
w : for some � � 0: If we

call wIu "the relative index of risk aversion" These func-
tions are such that their relative index are constant. By
doing so we de�ne "Harmonic" Risk aversion functions.
It is easy to see that that gives the following family.

De�nition 19 Constant relative risk aversion (CRRA)
functions are de�ned by :

u(w) = 1
1��w

1�� for � 6= 1 , and u(w) = ln(w); for
� = 1:

7 APPENDIX

Proof of Proposition 1. The utility function u ex-
hibits preference for diversi�cation, if and only if u is
concave.

preference for diversi�cation means :
8w; x : u

�
w + x

2

�
� u(w) � u(w + x)� u

�
w + x

2

�
that is :
8x; y : u

�
x+y
2

�
� u(x)+u(y)

2

take then � 2 [0; 1], it can be written in dyadic form
:

� =
1P
k=1

"k
2k
; 1� � =

1P
k=1

1�"k
2k

We have :

u(�x+ (1� �)y) = u
� 1P
k=1

"kx+(1�"k)y
2k

�
that is :

u(�x+ (1� �)y = u

0@ "1x+(1�"1)y+
1P
k=2

"kx+(1�"k)y
2k�1

2

1A
preference for diversi�cation implies :

u

0@ "1x+(1�"1)y+
1P
k=2

"kx+(1�"k)y
2k�1

2

1A �

u("1x+(1�"1)y)+u
� 1P
k=2

"kx+(1�"k)y
2k�1

�
2

as "1 is either 0 or 1 u ("1x+ (1� "1)y) = "1u(x) +
(1� "1)u(y)

Then we have :
u(�x + (1 � �)y � "1

2 u(x) +
1�"1
2 u(y) +

1
2u

� 1P
k=2

"kx+(1�"k)y
2k�1

�
doing the same trick with u

� 1P
k=2

"kx+(1�"k)y
2k�1

�
=

u((2�� "1)x+ (1� "1 � 2�)y); (and so on)
gives the result.


