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Abstract

We consider a general equilibrium model with individual and collective risks. The article builds on a contribution
by Chichilnisky and Heal, who show that contingent Arrow–Debreu equilibria can also be supported in economies
with Arrow securities and mutual insurance contracts. However, they show this to be true in general only if
beliefs are identical, a very restrictive assumption in the context of unknown risks. Moreover, they claim complete
insurance in equilibrium to be impossible if beliefs are different. We show that even with different beliefs, firstly,
complete insurance is possible in each statistical state, and secondly, contingent equilibrium can still be supported
in economies with insurance and securities.
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1. Introduction

In a recent contribution, Chichilnisky and Heal [1998] study exchange economies with
unknown risks in the following sense. Each household faces the risk of being in one of, say,
S individual states. The risk is unknown, however, and might even be unknowable, since
there is no repetition of certain events a sufficient number of times to permit estimation
of their probabilities. Each household, however, has beliefs, i.e., subjective probability
distributions, about being in a certain state of the world. These beliefs may differ from
household to household. Such a framework is by no means unusual and is covered, in
principle, by Debreu’s [1959] famous Chapter 7. It is well known that in such a framework
a complete set of state-contingent commodity markets would lead to a Pareto-efficient
allocation. As Chichilnisky and Heal [1992] emphasize, however, “[T]his approach may be
impracticable as the number of markets needed with individual risks. . . rises exponentially
with the number of agents in the economy” (p. 2). The reason is that a state-contingent market
approach requires decisions over the complete enumeration of all possible combinations of
individuals and states over the whole population of an economy.

To reduce this complexity and to nevertheless allow for insurance of the individuals
against the risks of being in certain states of the world, Chichilnisky and Heal introduce an
institutional framework with two types of instruments:mutual insurance contracts, on the
one hand, andArrow securities, as introduced in Arrow [1953], on the other. To understand
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the role of these instruments, it is necessary to consider the possible risks in more detail.
We will see that among the huge number of combinations of households and states, there
are several combinations that can be considered to be statistically equivalent.

For example, consider an economy with ten agents, where each agent may be in only
two different states, namely, sick or healthy. Then the economy on the whole may be in 210

different states. Assume for a moment that an insurance company is going to insure all ten
of these people against the financial burden in case of becoming sick (the doctors’ bills).
Imagine that exactly three people become sick. Then it does not matter to the insurance
company which three among the ten people are sick. Thus, to the insurance company, the
( 10

3 ) states of the economy in which exactly three people are sick are equivalent. If by
experience the insurance company knew that on average 30% of the people became sick,
i.e., if the risk were known, it could calculate premia and completely insure the people (i.e.,
pay for the full bill of the doctor). We call an event where a fixed number of people are sick,
e.g., three out of ten, astatistical state. If, on the other hand, the insurance company has no
idea of the risk, it faces 11 different risks according to the 11 different statistical states that
may arise. So the company could offer insurance contracts that pay 11 different payoffs
in case of sickness, contingent on the 11 different statistical states.1 With this example, we
see that all agents face two kinds of risks; first of all, theindividual riskof becoming sick
or not, and secondly thecollective risk, faced by all agents together, of not knowing which
statistical state will occur, i.e., how many people in the society will become sick.

Of course, this example, though explaining the difference between the two types of risks,
is not quite realistic, since in the long run the collective risk can be derived from statistical
data. More convincing examples of unknown risks are the effects of global warming or the
depletion of the ozone layer on the income or health of individuals (see Chichilnisky and
Heal [1993]).

As already mentioned, the crucial idea of Chichilnisky and Heal consists in combining two
well-known financial instruments in order to insure those two different risks. First,mutual
insurance contractsserve to insure the individual risk contingent on each possible statistical
state of sick people among the population,2 and second,Arrow securitiesserve to deal with
the unknown collective risk, that is, the uncertainty about the statistical state. One Arrow
security is needed for each possible number of sick people in the population.

In order to model the ignorance of the risk, Chichilnisky and Heal [1998] introduce
consumers who differ not only in their preferences and in their initial endowments but also,
above all, in their beliefs about the states of the world. In Chichilnisky and Heal [1992],
the model is slightly more complicated and also allows for different types of consumers.
In the present article, we follow the setup of Chichilnisky and Heal [1998]. But our results
apply equally to the model in Chichilnisky and Heal [1992].

The first result of Chichilnisky and Heal [1998] roughly states that, if beliefs are the
same for all households, complete insurance is possible within each statistical state. More
precisely, in a competitive contingent equilibrium, the final bundle consumed by each agent
depends on the statistical state only.

Secondly, however, the authors claim that if beliefs of any two households with different
utility functions are different, complete insurance is impossible! For different beliefs, the
authors claim that a weaker version of the result holds, i.e., complete insurance is only
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possible if the number of individual states does not exceed twoand if the economy is
regular.

In the present article, we argue that this second result of Chichilnisky and Heal is not
correct, and we present a counterexample. More precisely, we construct a small economy in
which consumers havedifferentbeliefs and nevertheless get fully insured in each statistical
state. Moreover, we show that the full insurance result holds even if different consumers’
beliefs about the states of the world are different. This finding makes the approach of
Chichilnisky and Heal even more powerful, for the notion ofunknown riskis associated in
general with different opinions about certain risks, as is the case, for example, in the current
discussion about global warming. Of course, unknown risk does not exclude the case that
all agents have the same, possibly wrong beliefs. But this case is very special and unlikely.
An approach on unknown risks should at least allow for people having different beliefs,
for if complete insurance were not possible in general whenever—as is usual in politics—
there are different opinions on certain hazardous risks such as global warming,3 one could
not guarantee that state-contingent market equilibria—known to be Pareto efficient—can be
supported in the institutional framework of mutual insurance contracts and Arrow securities.
In other words, we would not be able to conclude that an analogous result to the Second
Welfare Theorem holds in this framework. And thus we could not derive the existence
of Pareto-efficient market equilibria in such economies from the existence of contingent-
market equilibria.4 In order to make sure that Pareto-efficient allocations can be obtained
in a decentralized way, we would be forced to hold onto the contingent market approach.

Our main result generalizes Chichilnisky and Heal’s first result considerably by showing
that identical beliefs are not necessary to guarantee full insurance. Even with different
beliefs, households get fully insured within each statistical state in contingent-market equi-
librium. By virtue of this result, we are able to generalize a further result of Chichilnisky
and Heal by demonstrating that even withdifferentbeliefs, contingent-market equilibria
can be achieved by mutual insurance contracts and Arrow securities. This result makes the
combination of the two financial instruments, as suggested by Chichilnisky and Heal, more
powerful.

The article is organized as follows. We set up the basic model in Section 2, and we present
a generalized result on contingent equilibria in our framework in Section 3. In Section 4,
we then introduce economies with securities and mutual insurance. Section 5 contains the
generalization of Chichilnisky and Heal’s second result about supporting contingent-market
equilibria in economies with securities and mutual insurance contracts. In Section 6, we
discuss the flawed result of Chichilnisky and Heal and present the counterexample. The
last section concludes. The proofs are given in the Appendix.

2. Basics of the model

Consider a pure exchange economy withH consumers, and denote the set of consumers
by H̃ := {1, . . . , H}. We introduce two types of states (of the world), namely,individual
statesandcollective states. Let S̃ := {1, . . . , S} be the set ofindividual states5 that can
occur for an individual consumer. Initial endowments depend on the individual state only,
thus reflecting the individual component of the unknown individual risk. Moreover,
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it is assumed that this dependence is the same for all households. Thecollective state
of the economy can be described by a list of the individual states of each consumer, i.e., an
H -tupleω = (s1, . . . , sH ), with sh ∈ S̃ for all h ∈ H̃ . Formally, a collective stateω is a
functionω : H̃ → S̃ with h 7→ ω(h). Therefore,Ä := {ω | ω : H̃ → S̃} is the set of
collective states. Clearly,|Ä| = SH .

By definition,ω(h) is the individual state of consumerh in the collective stateω, and
H̃ω

s := {h ∈ H̃ | ω(h) = s} is the set of all consumers who find themselves in the individual
states when the collective state isω. Then the sets(H̃ω

s )s∈S̃ form a partition ofH̃ , i.e.,

⋃̇
s∈S̃

H̃ω
s = H̃ ∀ω ∈ Ä. (1)

Now define, fors ∈ S̃,

rs(ω) :=
∣∣H̃ω

s

∣∣
H

(2)

as the proportion of all consumers who are in the individual states when the collective state
isω. Clearly,

∑
s∈S̃ rs(ω) = 1 by (1) and (2) so thatr (ω) := (r1(ω), . . . , rS(ω)) ∈ 1S is the

distribution of consumers over the individual states in the collective stateω. We callr (ω)
a statistical state, since it contains the statistical information about how many consumers
are in a certain individual state but does not specifywho is in which individual state. Let
R := r (Ä) ⊂ 1S be the set of statistical states. By use of simple combinatorics, it is easy
to prove that|R| = ( H + S− 1

S− 1 ). Clearly,|R| < |Ä| for S≥ 2.6

Given a certain statistical state, there is only individual risk. The unknownness of the
individual risk is reflected in the model by consumers having different beliefs about the
statistical state. Summing up, the unknown individual risk is represented bycollective
uncertaintyabout the statistical state andindividual riskfor a given statistical state.

We now turn to the subjective beliefs about the states of the world. For convenience,
we start with subjective probability distributions over collective states, from which we will
later derive the distributions over statistical states. Let5h denote the subjective probability
distribution of consumerh over the collective states. In order to avoid problems caused by
zero probabilities, we assume7 that5h

ω := 5h(ω)>0 for all h ∈ H̃ andω ∈ Ä.
The following assumption about the probabilities5h, originating in Malinvaud [1973]

and being recalled by Chichilnisky and Heal, is important for the main results.

Assumption 1 (Anonymity Assumption): For each consumer h∈ H̃ , we have

5h
ω = 5h

ω̂
∀ω, ω̂ ∈ Ä with r(ω) = r (ω̂). (3)

The Anonymity Assumption means that any two collective states leading to the same sta-
tistical state are considered equally likely by all consumers. If we defineÄr := {ω ∈ Ä |
r (ω) = r } for r ∈ R, then the assumption implies—with a little abuse of notation8—that
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the subjective probabilities of each consumer are the same for all states inÄr , i.e.,

5h
ω = 5h

ω̂
=: 5h

r ∀ω, ω̂ ∈ Är , ∀h ∈ H̃ . (4)

Every5h induces a corresponding probability distribution5̂h on R (h ∈ H̃) defined by
5̂h

r :=∑ω∈Är
5h
ω (∀r ∈ R). Note that

⋃̇
r∈RÄr = Ä by definition ofÄr .9

Since5h > 0 in each component, it follows that5̂h
r > 0 (∀r ∈ R, ∀h ∈ H̃). Using the

Anonymity Assumption (here implicit in (4)), we obtain

5̂h
r

Def.=
∑
ω∈Är

5h
ω

(4)=
∑
ω∈Är

5h
r = |Är | ·5h

r . (5)

Concerning the conditional probability5h
s|r of consumerh for being in the individual

states given the statistical stater , we have the following:

Lemma 1:

5h
s|r = rs ∀h, s, r. (6)

In words: the conditional probability5h
s|r of consumerh for being in the individual state

s given the statistical stater equals the proportion of consumers in the individual states
(given the statistical stater ). See the Appendix for details of the proof, which uses the
Anonymity Assumption.

Let L ∈ IN be the number of commodities. Since consumers face the unknown individual
risk, we are interested in consumption across collective states. Therefore, the commodity
space formally becomesIRLSH

, and the consumption set of consumerh is IRLSH

+ . Let
zh = (zhω)ω∈Ä ∈ IRLSH

+ denote a consumption vector of consumerh, and letzhω ∈ IRL
+ the

consumption ofh in the collective stateω.
Further, leteh

s = es ∈ IRL
++ be the initial endowment of consumerh when she or he

is in the individual states (h ∈ H̃ , s ∈ S̃). Then the initial endowmenteh
ω of consumer

h in the collective stateω is given byeh
ω(h) ∈ IRL

++ (h∈ H̃ , ω∈Ä). Accordingly, eh :=
(eh
ω(h))ω∈Ä ∈ IRLSH

++ defines the initial endowment ofh over all collective states.
About the preferences we make the following assumption:

Assumption 2: The preferences of consumer h can be represented by a utility function
Wh : IRLSH

+ → IR, with

Wh(zh) :=
∑
ω∈Ä

5h
ω Uh(zhω), (7)

where Uh : IRL
+ → IR is twice continuously differentiable, strictly increasing, and strictly

concave for all h∈ H̃ .10
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Thus,Uh is a utility function of the von Neumann–Morgenstern type, whereasWh denotes
the expected utility function of consumerh. Assumption 2 implies that the consumer demand
correspondences are continuous functions.11

For the sake of consumers’ insurance against the unknown individual risk, we will con-
sider two different kinds of frameworks: contingent markets, on the one hand, and a com-
bination of securities markets and mutual insurance contracts on the other. Whereas the
contingent-market approach is standard, the other approach—to the best of our knowledge—
was introduced for the first time by Cass, Chichilnisky, and Wu [1996] and by Chichilnisky
and Heal [1992, 1998]. As we will show later, this approach “fits the problem” and is
clearly more suitable than the contingent-market approach. For a related approach to the
allocation of collective and individual risks, see Magill and Shafer [1992].

3. Properties of contingent-market equilibrium

In this section, we present a result on the properties of contingent-market equilibrium given
the assumptions made in our model. Although we do not consider contingent markets to
be the appropriate framework for unknown risks, we use the concept as a benchmark in
order to exploit its well-known properties for our main result. There we will show that a
contingent-market equilibrium allocation can also be supported as an equilibrium in the
corresponding economy with securities and mutual insurance.

Consider a complete system of contingent markets with regard to the set of collective
statesÄ. Since each collective state consists of alist of all individual states, there are
many collective states—and the use of contingent marketsinflatesthe commodity space to
the dimensionLSH . Assuming the existence of a complete system of contingent markets
with respect to the state spaceÄ is therefore tantamount to considering an Arrow–Debreu
economy withLSH commodities. The well-known results concerning the existence of
equilibria and their properties, e.g., the Welfare Theorems, continue to hold. By the First
Welfare Theorem, we know that contingent-market equilibria are Pareto efficient. On the
other hand, the disadvantages of the contingent-market approach are obvious. Since the
number of markets rises exponentially with the number of consumers, a complete system of
contingent markets is unlikely to be established. And even if such a system were established,
the large number of markets alone makes contingent market equilibrium a tedious concept
to be dealing with.

Fortunately, given our assumptions, things are not as complicated as they seem: there
is much redundancy in contingent-market equilibria, in the sense that equilibrium prices
and allocations are constant for each statistical state, i.e., within certain groups of collective
states. So in our context, the structure of contingent equilibria is actually simpler than could
be expected in general. This outcome is formally stated in the following theorem, which
generalizes Proposition 1 of Chichilnisky and Heal [1998].

Theorem 1: Let(p∗, z∗) = ((p∗ω)ω∈Ä, (z∗hω)ω∈Ä,h∈H̃ ) ∈ IRLSH

++ × IRLSH H
+ be a contingent-

market equilibrium. Then

1. z∗ω = z∗r ∀ω ∈ Är , ∀r ∈ R, (8)
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2. p∗ω = p∗r ∀ω ∈ Är , ∀r ∈ R, (9)

where z∗ω := (z∗hω)h∈H̃ ∈ IRL H
+ and z∗h := (z∗hω)ω∈Ä ∈ IRLSH

+ .

The proof is lengthy and is given in the Appendix. In contrast to Chichilnisky and Heal,
however, we do not require all consumers to have the same probability distribution over
collective states, i.e., we donot assume5h = 5k for h, k ∈ H̃ . This extends the range of
application of the model considerably, because if risks areunknown, it is extremely unlikely
that all consumers have the same, possibly wrong probability beliefs. Thus, we also do not
need to restrict the range of application to the special case ofS= 2 and a regular economy,
as Chichilnisky and Heal do when not assuming identical beliefs.

4. Economies with securities and mutual insurance contracts

As explained in Section 2, the unknown individual risk has a collective and an individual
component. Whereas securities are suitable for collective uncertainty, the adequate way of
dealing with individual risk is the use of insurance markets. For this reason, Chichilnisky and
Heal introduce the appropriate asset for each component of the unknown individual risk, i.e.,
a complete set ofsecuritiesdefined on statistical states and a suitable set ofmutual insurance
contractscontingent on each statistical state. The securities enable consumers to insure
themselves against the collective uncertainty with respect to the statistical state, whereas
the remaining individual risk can be insured by mutual insurance contracts contingent on
the statistical state.

Consider now a system of|R| Arrow securitiesAr ∈ IR|R| (r ∈ R). Define Ar as the
r th unit vector inIR|R|(r ∈ R). Ar is a contract guaranteeing one unit of the num´eraire—
good if the statistical state turns out to ber , and nothing otherwise.12 The price of security
Ar (r ∈ R) is denoted byqr ∈ IR+. Let q := (q1, . . . ,q|R|) ∈ IR|R|+ . Moreover, denote by
ah

r ∈ IR the amount of securityAr bought (or sold in the case ofah
r < 0) by consumerh.

For h ∈ H̃ , defineah := (ah
1, . . . ,a

h
|R|) ∈ IR|R| anda := (a1, . . . ,aH ) ∈ IR|R|H .

For each statistical state, consumerh chooses a vector of insurance transfersmh
r :=

(mh
1r , . . . ,m

h
Sr) ∈ IRS, wheremh

sr ∈ IR is the transfer received (or paid) by consumerh
if the statistical state isr and his individual state iss. Each consumer chooses a tuple
mh := (mh

1, . . . ,m
h
|R|) of insurance vectors.

Assumption 3: Consumer h can choose his tuple of insurance vectors from the set

Mh :=
{

mh ∈ IRS|R|
∣∣∣∣∣ S∑

s=1

5h
s|r m

h
sr = 0 ∀r ∈ R

}
.

In words: given a statistical stater , consumerh can choose any insurance vectormh
r with

contingent expectation of zero. This means the insurance vectors have to beactuarially
fair.
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The budget set of consumerh in an economy with securities and mutual insurance
contracts (denoted byESI) at spot market pricesp and security pricesq is given by

Bh
SI(p,q; eh) :=

{
(zh,a

h,mh) ∈ IRLSH

+ × IR|R| × IRS|R|
∣∣∣∣ (zh,ah,mh) satis-
fies (10), (11), (12)

}
,

where

pω
(
zhω − eh

ω

) = ah
r (ω) +mh

ω(h) r (ω) ∀ω ∈ Ä, (10)∑
r

qr a
h
r = 0, (11)∑

s

5h
s|r m

h
sr = 0 ∀r ∈ R. (12)

Equation (10) represents the budget constraints of consumerh on the spot markets in the
collective states, where the right-hand side consists of income (or obligations) from the
portfolio of securities and the mutual insurance vector. Equation (11) ensures that the port-
folio of consumerh is self-financing (there are no endowments in securities), whereas (12)
requires the insurance vectors to be actuarially fair.

Sometimes we will only be interested in the first component of the tuples contained in
the budget set. Hence we also consider the projection onto this component

B̂h
SI(p,q; eh) :=

{
zh ∈ IRLSH

+

∣∣∣∣ ∃ah ∈ IR|R|,mh ∈ IRS|R| :
(zh,ah,mh) ∈ Bh

SI(p,q; eh)

}
.

Finally, we formally define the notion of equilibrium in an economy with securities and
insurance. Doing this, we follow the intuition presented in the articles by Chichilnisky and
Heal [1992, 1998] where no formal definition was given.

Definition 1: An equilibrium in an economy with securities and mutual insurance con-
tracts (equilibrium in ESI) is a tuple(p∗,q∗, z∗,a∗,m∗) ∈ IRLSH

++ × IR|R|++ × IRLSH H
+ ×

IR|R|H × IR|R|SH with

(a) ∀h = 1, . . . , H :

z∗h ∈ argmax
{
Wh(zh)

∣∣ zh ∈ B̂h
SI(p

∗,q∗; eh)
}

(13)

and (z∗h,a
h∗,mh∗) ∈ Bh

SI(p
∗,q∗; eh), (14)

(b)
H∑

h=1

(z∗h − eh) = 0, (15)

(c)
H∑

h=1

ah ∗
r = 0 ∀r ∈ R. (16)
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Here, (13) and (14) require utility maximization with respect to the budget setBh
SI(p

∗,
q∗; eh) at equilibrium prices. Equation (15) guarantees market clearing on the spot markets,
whereas (16) ensures market clearing on the security markets.

Note that (12) and (14) guarantee that in each statistical state the sum of premia and
payments are balanced, i.e.,∑

h,s

5h
s|r m

h∗
sr = 0 ∀r ∈ R. (17)

So this need not be required in the definition of equilibrium.

5. Supporting contingent-market equilibria in economies
with securities and mutual insurance

We are now able to show that each contingent-market equilibrium can be supported as an
equilibrium in the corresponding economy with securities and mutual insurance. From this
result—since contingent-market equilibria are just Arrow–Debreu equilibria with an appro-
priately defined commodity space—we can learn a lot about equilibria in economies with
securities and mutual insurance. Technically, since theESI equilibrium is defined on a larger
space, we have to “extend” the contingent-market equilibrium by defining both security
equilibrium prices as well as equilibrium portfolios plus insurance vectors for consumers
such that we get an equilibrium inESI. In contrast to Chichilnisky and Heal [1998], we
are again able to dispense with the assumption of equal beliefs across consumers—without
having to assumeS= 2 and a regular economy instead—thus generalizing their main result
considerably.

If (p∗, z∗) is a contingent market equilibrium, then, using Theorem 1, Equation (8), we
can writezh∗

r := z∗hω for r := r (ω). This notation reflects the result of Theorem 1. In other
words, in a contingent-market equilibrium, consumption only depends on the statistical
state.

Theorem 2: Let (p∗, z∗) ∈ IRLSH

++ × IRLSH H
+ be a contingent-market equilibrium. Define

q∗ ∈ IR|R|++, a∗ ∈ IR|R|H , and m∗ ∈ IRS|R|H by

q∗r := |Är | ∀r ∈ R, (18)

ah∗
r :=

S∑
s=1

5h
s|r p∗r

(
zh∗

r − es
) ∀r ∈ R, ∀h ∈ H̃ , (19)

mh∗
sr := p∗r

(
zh∗

r − es
)− ah∗

r ∀r ∈ R, ∀s ∈ S̃, ∀h ∈ H̃ . (20)

Then(p∗, z∗,q∗,a∗,m∗) is an equilibrium in the corresponding economy with securities
and mutual insurance contracts(i.e., in ESI).

The theorem is constructive in the sense that it not only proves that contingent-market
equilibria can be supported in economies with securities and mutual insurance but also
states explicitelyhow portfolios and insurance vectors as well as security prices have to
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be chosen. The equilibrium allocation of securities and insurance can be interpreted as
follows (see Chichilnisky and Heal [1992, 1998]).ah∗

r is the expected value of the excess
demand of consumerh, conditional on being in the statistical stater , so that on average
his budget is balanced in the stater . Of course, the actual value of the excess demand can
differ from the expected value. The mutual insurance contracts are designed to make up
for these differences.13

Theorem 2 allows several important conclusions. First of all, it tells us that it is possible
to have Pareto-efficient equilibria inESI. More precisely, if we have anESI equilibrium
induced by a contingent equilibrium in the sense of Theorem 2, then the allocation of
goods in this equilibrium is Pareto efficient. Considering this theorem in connection with
the Second Welfare Theorem, we can conclude that every Pareto-efficient allocation can
be supported (if necessary after a suitable redistribution of endowments) inESI. So the
analogue to the Second Welfare Theorem holds in economies with securities and mutual
insurance, whereas this is not true for the First Welfare Theorem. (From Theorem 2 we can
only conclude that a certain kind of equilibrium inESI is Pareto efficient.)

Theorem 2 also implies that there are always at least as many equilibria inESI as in
the underlying contingent economy. In particular, the existence of contingent equilibrium
implies the existence of equilibrium in the correspondingESI economy. On the other hand,
if the contingent-market equilibrium is not unique, theESI equilibrium cannot be unique
either.

6. Discussion of Chichilnisky and Heal [1998]

In this section, we briefly summarize the results of Chichilnisky and Heal [1998] in order to
be able to compare those results with ours. As already mentioned, Chichilnisky and Heal
present a result corresponding to Theorem 1 (Proposition 1, p. 282), but with the additional
assumption of beliefs being equal for all consumers. As discussed above, this assumption
is not satisfactory when dealing with unknown risks.

Chichilnisky and Heal, however, even go one step further by claiming explicitly that the
full insurance within statistical statesresult (c.f. our Theorem 1) doesnot hold for het-
erogenous beliefs, unless there are only two different individual states of the world and the
economy is regular.

Chichilnisky/Heal [1998]: Proposition 2
(a) If 5h 6= 5k for some households h, k with Uh 6= Uk, then(8) does not hold.
(b) If the economy is regular, all agents have the same utilities, and S= 2, then one of the

equilibrium prices must satisfy p∗ω1
= p∗ω2

for all ω1, ω2 with r(ω1) = r (ω2).

Their main result (Theorem 1 of Chichilnisky and Heal [1998]) is a less general version
of our Theorem 2 above—again, they either assume identical beliefs or only consider the
special case of a regular economy withS= 2.

Part (a) of their Proposition 2 is essentially a negation of (8) in our Theorem 1. Since
we have proved Theorem 1 for the more general case of heterogenous beliefs, our result
contradicts the claim by Chichilnisky and Heal. In the following, we will explain what
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is wrong with their proof, and we will also present a counterexample to part (a) of their
Proposition 2. Part (b) is correct, but has already turned out to be a special case of our
Theorem 1. Therefore, we concentrate on part (a).

The line of argument in the proof (given on p. 288 of Chichilnisky and Heal [1998]) goes
as follows.14 The authors proceed indirectly by assuming (8) to hold and trying to derive
a contradiction. They consider two householdsh andk, with 5h 6= 5k, and compute
their marginal rates of substitution between consumption in two collective statesω1 and
ω2, with r (ω1) = r (ω2), i.e., two collective states leading to the same statistical state.
Since Chichilnisky and Heal make an additional assumption on the separability of the
utility function with respect to statistical states, they can derive householdh’s marginal rate
of substitution between consumption in stateω1 andω2 as5h

s1|r /5
h
s2|r , wheres1=ω1(h)

ands2 = ω2(h). By the same argument, householdk’s marginal rate of substitution is
5k

s1|r /5
k
s2|r . The contradiction, they say, then arises from the fact that these two households

with allegedly different marginal rates of substitution face the same price vector.
Unfortunately, the proof contains two flaws. First of all, as Chichilnisky and Heal correctly

say in their first paragraph on page 281,

“[the] Anonymity [Assumption] implies that 5h
s|r = rs, . . . ” .

15 (21)

Therefore, in their construction of the proof, the marginal rates of substitution would be
independent of the household considered and equal tors1/rs2 for both householdsh and
k. So the contradiction vanishes, merely by making use of the implication (21). The
second incorrectness is that the authors neglect the fact that in general,s1=ω1(h) 6=ω1(k).
Although this problem seems to be only a technical problem that could be corrected by
definingω1(k) =: s3 andω2(k) =: s4, we would get

rs1

rs2

= rs3

rs4

,

which does not give the required contradiction either.
Why does this line of argument not work in general? Consider the utility function as

defined in (7) of the present article and on page 281 of Chichilnisky and Heal [1988].16 In
that notation, the marginal rate of substitution for householdh between collective statesω1

andω2 with r (ω1) = r (ω2), when fully insured, is

5h
ω1

5h
ω2

(3)= 1

by the Anonymity Assumption. In the same way, we get for householdk

5k
ω1

5k
ω2

= 1.

This outcome, however, implies

MRSh
ω1ω2
= 5h

ω1

5h
ω2

= 1= 5k
ω1

5k
ω2

= MRSk
ω1ω2

.
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So clearly, since households’ marginal rates of substitution are the same anyway, there can
be no contradiction to the fact that households face the same price vector. This shows how
powerful the Anonymity Assumption is.

Counterexample to part (a) of Proposition 2 of Chichilnisky/Heal [1998]

To make things even clearer, we present a counterexample to Proposition 2, part (a), of
Chichilnisky and Heal [1998]. TakeH = 2 andS= 2, so that the set of collective states
isÄ = {ω1, . . . , ω4}, where

ω1 = (1, 1), ω2 = (1, 2), ω3 = (2, 1), ω4 = (2, 2).

There are three statistical states:

r (ω1) = (1, 0) =: r1,

r (ω2) = r (ω3) =
(

1

2
,

1

2

)
=: r2,

r (ω4) = (0, 1) =: r3.

Sete1 = (1, 3) ande2 = (3, 1). The von Neumann–Morgenstern utility functions are given
by

U1(x1, x2) = 1/4 lnx1+ 3/4 lnx2,

U2(x1, x2) = 3/4 lnx1+ 1/4 lnx2.

The functionsUh are twice continuously differentiable, strictly increasing, and strictly
concave on their domainIR2

++. They satisfy Assumption 2 with the sole exception of
only being defined onIR2

++, since the natural logarithm is only defined for strictly positive
values.17 Note that, apart from the restriction of the domain, the functionsUh satisfy all the
assumptions made by Chichilnisky and Heal [1998]. In particular the indifference curves
in this example do not cut into the boundary. Let51 = ( 1

4,
1
4,

1
4,

1
4) and52 = ( 1

6,
1
3,

1
3,

1
6).

This leads to

p∗ =
((

27

164
,

11

164

)
,

(
45

328
,

39

328

)
,

(
45

328
,

39

328

)
,

(
9

164
,

33

164

))
,

z∗1 =
((

2

3
,

54

11

)
,

(
4

5
,

36

13

)
,

(
4

5
,

36

13

)
,

(
2,

18

11

))
, and

z∗2 =
((

4

3
,

12

11

)
,

(
16

5
,

16

13

)
,

(
16

5
,

16

13

)
,

(
4,

4

11

))
.

Note that the second and third components of the equilibrium price and the equilibrium
allocation respectively (which correspond to the collective statesω2 andω3, both leading
to the same statistical stater2) are identical. Therefore, only the statistical state matters
for equilibrium—even with different beliefs. This conclusion contradicts part (a) of
Proposition 2 in Chichilnisky and Heal.
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7. Conclusions

We built on a recent contribution by Chichilnisky and Heal [1998], who considered exchange
economies with unknown individual risks. These authors pointed out that ignorance of indi-
vidual risks leads to additional collective risks. By introducing two financial instruments to
deal with those two risks, i.e., mutual insurance contracts and Arrow securities, the authors
showed that a (Pareto-efficient) state contingent Arrow–Debreu market equilibrium can be
supported by an equilibrium in an economy endowed with those two financial instruments.
However, they made the strong assumption of identical beliefs across households. More-
over, they claimed that if beliefs were different, complete insurance within a statistical state
would be impossible, and only in a special case did they show that state contingent-market
equilibria can be supported by the financial instruments discussed throughout their article.
But this conclusion would leave us with only the contingent-market approach (with all its
disadvantages) in order to restore efficiency.

In this article, we showed it not to be correct that different opinions on the risks lead to
incomplete insurance within a statistical state. Even more strongly, we showed that a state-
contingent Arrow–Debreu market equilibrium can still be supported in economies endowed
with financial instruments such asmutual insurance contractsplusArrow securities. Put
differently, we showed that the analogue to the Second Welfare Theorem holds in such
economies—even with different opinions on the risks. This finding makes the combination
of those two instruments even more powerful.

It should be mentioned that this whole approach relies on von Neumann–Morgenstern
utility functions. In particular, the households’ utilities are state dependent only through
different initial endowments, beliefs, and, thus, final allocations. The utility functions
themselves arenotstate dependent. This situation may yet be considered as a shortcoming
of the approach. For example, the utility of some medicine or of a wheelchair for a sick
or handicapped person is in general different from the utility of these items for a “healthy”
person. Thus, in a more general framework, we would like to deal with utility functions that
differ from state to state.18 With state-dependent utility functions, neither our proofs nor
those of Chichilnisky and Heal go through. Whether the results or modified versions will
hold for state-dependent utility functions is an open problem and has to be left for further
research.

Appendix

Proof of Lemma 1

Step 1:Making use of elementary methods from combinatorics, it can be shown that

|Är | = H !

(H · r1)! · . . . · (H · rS)!
∀r ∈ R. (22)

Step 2: For h ∈ H̃ , r ∈ R ands ∈ S̃, defineÄh
rs := {ω ∈ Är | ω(h) = s} as the set of

all collective states inÄr in which consumerh is in the individual states. This defines a
partition ofÄr for eachh and eachr.
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Arguing similarly as in step 1 proves that∣∣Äh
rs

∣∣ = rs · |Är | ∀h ∈ H̃ , r ∈ R, ∀s ∈ S̃ . (23)

Step 3:The conditional probability5h
s|r can now be calculated (in terms of collective states)

as follows:

5h
s|r = 5h{ω ∈ Ä : ω(h) = s | r (ω) = r } = 5h{ω ∈ Ä : ω(h) = s, r (ω) = r }

5h{ω ∈ Ä : r (ω) = r }

=
∑

ω∈Äh
rs
5h
ω∑

ω∈Är
5h
ω

(3)=
∑

ω∈Äh
rs
5h

r∑
ω∈Är

5h
r

= 5h
r

5h
r

·
∣∣Äh

rs

∣∣
|Är |

(23)= rs|Är |
|Är |

= rs, (24)

thus completing the proof.

Proof of Theorem 1:

Lemma: For all ω ∈ Är and for all r ∈ R,

H∑
h=1

eh
ω = H

S∑
s=1

rs · es =: Er . (25)

That is, total endowments of the economy are the same for all collective states leading to
the same statistical state.

The proof is easy and is omitted. It uses a number of suitable partitions as well as the
definition of the functionrs.

Step 1:Assume that (8) doesnothold; then

∃h ∈ H̃ , r ∈ R, ω1, ω2 ∈ Är with z∗hω1
6= z∗hω2

. (26)

Starting from the equilibrium allocationz∗, we now define a different feasible allocation
and show that it is a Pareto improvement onz∗. The First Welfare Theorem then gives us
the desired contradiction.

Step 1a: For h ∈ H̃ andr ∈ R, we will define the conditional expectationEz∗hr of the
(z∗hω)ω∈Ä given r . Let5h(ω | r ) denote as usual the conditional probability ofω given r
for consumerh. In a similar way,5h(ω, r ) is the probability of the collective state being
ω and the statistical state beingr . By definition ofÄr , we have

5h(ω | r ) = 0 ∀ω 6∈ Är , (27)

and

5h(ω, r ) = 5i
ω ∀ω ∈ Är , (28)
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for all h ∈ H̃ .

Ez∗hr :=
∑
ω∈Ä

5h(ω | r ) z∗hω
(27)=

∑
ω∈Är

5h(ω, r )

5̂h(r )
z∗hω

(28)=
∑
ω∈Är

5h
ω

5̂h
r

z∗hω
(4)=
∑
ω∈Är

5h
r

5̂h
r

z∗hω
(5)=
∑
ω∈Är

1

|Är | z∗hω. (29)

DefineEz∗h := (Ez∗hr(ω))ω∈Ä ∈ IRLSH

+ andEz∗ := (Ez∗1, . . . , Ez∗H ). The bundleEz∗hr(ω)
gives consumerh the conditional expectation of the bundles(z∗hω)ω∈Ä—conditional on
r (ω)—instead ofz∗hω. SinceEz∗hr does not depend on5h for all h ∈ H̃ and for allr ∈ R,
Ez∗ is also independent of the consumers’ probability distributions.
Step 1b:We show thatEz∗ is a feasible allocation. Letr ∈ R.∑

h

Ez∗hr
(29)=

∑
h

∑
ω∈Är

1

|Är | z∗hω =
∑
ω∈Är

1

|Är |
∑

h

z∗hω. (30)

By assumption,z∗ is an equilibrium allocation. Hence, market clearing yields
∑

h z∗hω =∑
h eh

ω for all ω ∈ Ä. By (25), we have
∑

h eh
ω = Er for all ω ∈ Är . Hence,

∑
h z∗hω =∑

h eh
ω = Er for all ω ∈ Är . Substituting into (30) yields (for eachω ∈ Är )∑

h

Ez∗hr =
∑
ω∈Är

1

|Är |Er = Er · 1

|Är |
∑
ω∈Är

1= Er =
∑

h

eh
ω . (31)

Hence,∑
h

Ez∗h =
(∑

h

Ez∗hr(ω1)
, . . . ,

∑
h

Ez∗hr(ωSH )

)

=
(∑

h

eh
ω1
, . . . ,

∑
h

eh
ωSH

)
=
∑

h

eh .

This completes the proof ofEz∗ being a feasible allocation.
Step 1c:We now show thatEz∗ is a Pareto improvement onz∗.

1. It is easily shown that forh = 1, . . . , H ,[
z∗hω = z∗hr ∀ω ∈ Är ∀r

]⇐⇒ Ez∗h = z∗h. (32)

2. We now consider the following statement:[
h satisfies:z∗hω1

= z∗hω2
= z∗hr ∀ω1, ω2 ∈ Är , ∀r

]
. (33)

Let h ∈ H̃ . Then two cases are possible:



44 SUSANNE KLIMPEL AND TILL REQUATE

Case 1:h satisfies (33), which by point 1 is equivalent toEz∗h = z∗h. But then

Wh(Ez∗h) = Wh(z∗h).

Case 2:h doesnotsatisfy (33), i.e.,

∃r ∈ R andω1 andω2 ∈ Är , with z∗hω1
6= z∗hω2

. (34)

To start with,

Wh(Ez∗h)
(4),(7)=

∑
r

5h
r

∑
ω∈Är

Uh(Ez∗hr )

(29)=
∑

r

5h
r

∑
ω∈Är

Uh

( ∑
ω∈Är

1

|Är | z∗hω

)
. (35)

Since
∑

ω∈Är

1
|Är | = 1, the argument ofUh in (35) is a convex combination of thez∗hω, ω ∈

Är . In order to distinguish easily between nontrivial and trivial convex combinations, we
define the sets

Rh
= := {r ∈ R | z∗hω = z∗hr ∀ω ∈ Är }

and

Rh
6= := {r ∈ R | ∃ω1, ω2 ∈ Är with z∗hω1

6= z∗hω2

}
.

ThenRh
= ∪̇Rh

6= = R. For allr ∈ Rh
=, we are dealing with a trivial convex combination, i.e.,∑

ω∈Är

1
|Är |z

∗
hω = z∗hr . Consequently, for allr ∈ Rh

=,

U h

( ∑
ω∈Är

1

|Är |z
∗
hω

)
= Uh(z∗hr ) =

∑
ω∈Är

1

|Är |U
h(z∗hω). (36)

For r ∈ Rh
6=, we have nontrivial convex combinations. By strict concavity ofUh,

U h

( ∑
ω∈Är

1

|Är |z
∗
hω

)
>
∑
ω∈Är

1

|Är |U
h(z∗hω) ∀r ∈ Rh

6=. (37)

SinceRh
6= 6= ∅ by (34),

Wh(Ez∗h)
(35)=

∑
r

5h
r

∑
ω∈Är

Uh

( ∑
ψ∈Är

1

|Är |z
∗
hψ

)
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(36),(37)
>

∑
r

5h
r

∑
ω∈Är

∑
ψ∈Är

1

|Är |U
h(z∗hψ)︸ ︷︷ ︸

indep. ofω

=
∑

r

∑
ψ∈Är

1

|Är |U
h(z∗hψ)

∑
ω∈Är

5h
r

(4)=
∑
ω∈Ä

5h
ωUh(z∗hω) = Wh(z∗h).

3. By point 2 we haveWh(Ez∗h) ≥ Wh(z∗h) for all h ∈ H̃ . Due to (26), there exists at least
oneh that does not satisfy (33). For this/theseh, we even haveWh(Ez∗h) > Wh(z∗h).
Therefore,Ez∗ is a Pareto improvement onz∗.

Step 1d: By the First Welfare Theorem,z∗ is Pareto efficient, and thus there cannot be
an allocation that is a Pareto improvement onz∗. This gives us the desired contradiction,
and (8) must hold.

Note that (8) also implies that within each statistical state, the equilibrium consumption
of consumerh does not depend on the individual state, i.e., in contingent equilibrium we
have full insurance within each statistical state. Since consumers are risk averse according
to Assumption 2, this is not surprising.
Step 2:Since(p∗, z∗) is a contingent-market equilibrium, we know that consumers max-
imize utilities. Leth ∈ H̃ . From the first-order conditions for utility maximization of
consumerh, we get

5h
ω · gradUh(z∗hω) = λh p∗ω ∀ω∈Ä, (38)

whereλh is the Lagrange multiplier in the maximization problem of consumerh. Using
the Anonymity Assumption, Equation (38) yields

p∗ω1
= 5h

r

λh
· gradUh

(
z∗hω1

)
and

p∗ω2
= 5h

r

λh
· gradUh

(
z∗hω2

) (8)= 5h
r

λh
· gradUh

(
z∗hω1

) = p∗ω1
,

which proves (9). This completes the proof.

Proof of Theorem 2:

According to Definition 1, we have to show that(p∗, z∗,q∗,a∗,m∗) satisfies (13) to (16).

Step 1:We use the fact that(p∗, z∗) is a contingent-market equilibrium in order to derive
some useful identities.
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Step 1a:By Theorem 1,

p∗ω = p∗r ∀ω ∈ Är , ∀r, (39)

and

z∗hω = zh∗
r ∀ω ∈ Är , ∀r. (40)

Step 1b:By our assumptions,z∗h satisfies the budget restraint of consumerh for all h ∈ H̃ .
Due to Theorem 1 (Equations (39) and (40)), as well as by the definition ofÄh

rs and (23),
we can express this equation in terms ofr ands instead ofω:

p∗(z∗h − eh)
(39),(40)=

∑
r∈R

p∗r
∑
ω∈Är

(
zh∗

r − eh
ω(h)

)
(23)=

∑
r∈R

p∗r
S∑

s=1

rs|Är |
(
zh∗

r − eh
s

)
.

Therefore,

p∗(z∗h − eh) = 0⇐⇒
∑
r∈R

p∗r |Är |
S∑

s=1

5h
s|r
(
zh∗

r − eh
s

) = 0. (41)

Step 1c: We deal with the market-clearing condition in the same way. Here, besides
Theorem 1, we use (1) and (2), obtaining∑

h

(z∗h − eh) = 0

⇐⇒
∑

h

(
z∗hω − eh

ω

) = 0 ∀ω ∈ Ä

⇐⇒
∑

h

z∗hω −
∑

h

eh
ω = 0 ∀ω ∈ Är , ∀r

(25),(40)⇐⇒
∑

h

zh∗
r − H

∑
s

rses = 0 ∀r

⇐⇒
∑

h

zh∗
r

(∑
s

rs

)
︸ ︷︷ ︸
=1

−
∑

h

∑
s

rses = 0 ∀r

⇐⇒
∑
h,s

rs(z
h∗
r − es) = 0 ∀r. (42)

Step 2: First of all, we show that (14) is satisfied for allh∈ H̃ , i.e., we show that
(z∗h,a

h∗,mh∗) ∈ Bh
SI(p

∗,q∗; eh) for all h ∈ H̃ .
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Let h ∈ H̃ . By definition of Bh
SI(p

∗,q∗; eh), we have to show that(z∗h,a
h∗,mh∗) satis-

fies (10), (11), and (12) with reference top∗ andq∗.
Step 2a:We begin with (10). It is straightforward to check that (10) is satisfied with respect
to p∗ by the definition ofmh∗

sr in (20) and Theorem 1.
Step 2b:Now we show that (11) holds with respect toq∗:

∑
r

q∗r ah∗
r

(18),(19)=
∑

r

|Är |
∑

s

p∗r 5
h
s|r
(
zh∗

r − eh
s

) (41)= 0

Step 2c:It remains to prove that (12) also holds with respect top∗ for (z∗h,a
h∗,mh∗). Let

r ∈ R. Then

S∑
s=1

5h
s|r m

h∗
sr

(19),(20)=
S∑

s=1

5h
s|r

[
p∗r
(
zh∗

r − eh
s

)− S∑
σ=1

5h
σ |r
(
p∗r
(
zh∗

r − eh
σ

))]

=
S∑

s=1

5h
s|r
[
p∗r
(
zh∗

r − eh
s

)]− S∑
s=1

5h
s|r

[
S∑

σ=1

5h
σ |r
(
p∗r
(
zh∗

r − eh
σ

))]
︸ ︷︷ ︸

independ. of s

=
S∑

s=1

5h
s|r
[
p∗r
(
zh∗

r − eh
s

)]−[ S∑
σ=1

5h
σ |r
(
p∗r
(
zh∗

r − eh
σ

))] S∑
s=1

5h
s|r︸ ︷︷ ︸

=1

= 0,

i.e., (12) holds with reference top∗. Thus,(z∗h,a
h∗,mh∗) ∈ Bh

SI(p
∗,q∗; eh) for all h ∈ H̃ ,

i.e., (14) holds.
Step 3:Now we show (13), i.e.,

z∗h ∈ argmax
{
Wh(zh) | zh ∈ B̂h

SI(p
∗,q∗; eh)

} ∀h ∈ H̃ .

Step 3a:We begin by proving

B̂h
SI(p

∗,q∗; eh) ⊆ B̄h(p∗, eh) := {zh ∈ IRLSH

+ | p∗(zh − eh
) = 0

} ∀h ∈ H̃ . (43)

B̄h(p∗, eh) is the budget set of consumerh at pricesp∗ in the corresponding contingent-
market economy.

Let h ∈ H̃ and zh ∈ B̂h
SI(p

∗,q∗; eh). By definition of B̂h
SI(p

∗,q∗; eh), there exist
ah ∈ IR|R| andmh ∈ IRS|R| such that(zh,ah,mh) ∈ Bh

SI(p
∗,q∗; eh). Consequently,(zh,ah,

mh) satisfies (10) with reference top∗. Summing overω leads to∑
ω∈Ä

p∗ω
(
zhω − eh

ω

) =∑
ω∈Ä

ah
r (ω) +

∑
ω∈Ä

mh
ω(h)r (ω)
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⇐⇒ p∗(zh − eh) =
∑

r

∑
ω∈Är

ah
r (ω)︸ ︷︷ ︸

= 0 by (18),(11)

+
∑

r

∑
ω∈Är

mh
ω(h)r (ω)

⇐⇒ p∗(zh − eh) =
∑
r∈R

∑
s

∑
ω∈Äh

rs

mh
sr
(23)=

∑
r∈R

|Är |
∑

s

5h
s|r m

h
sr︸ ︷︷ ︸

=0 by (12)

= 0. (44)

Sozh ∈ B̄h(p∗, eh), which proves (43).
Step 3b:Let h ∈ H̃ . By assumption, we know that

z∗h = argmax{Wh(zh) | zh ∈ B̄h(p∗, eh)}

holds.19 Since B̂h
SI(p

∗,q∗; eh) ⊆ B̄h(p∗, eh) and z∗h ∈ B̂h
SI(p

∗,q∗; eh), since the tuple
(z∗h,a

h∗,mh∗) belongs toBh
SI(p

∗,q∗; eh) by Step 2, we directly getz∗h = argmax{Wh(zh) |
zh ∈ B̂h

SI(p
∗,q∗; eh)}, which proves (13).20

Step 4:Regarding (15), there is nothing to show, since
∑

h(z
∗
h− eh) = 0 continues to hold

by assumption. Only (16) remains to be shown. Letr ∈ R. Then

∑
h

ah∗
r

(19)=
∑

h

S∑
s=1

5h
s|r p∗r

(
zh∗

r − eh
s

) (6)= p∗r
∑

h

∑
s

rs
(
zh∗

r − es
) (42)= 0.

This completes the proof.
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Notes

1. Insurance companies that insure houses against damage from hurricanes usually have clauses saying that they
are not obliged to pay for the full damage if there has been an extraordinarily strong hurricane. Whether the
hurricane has been extraordinarily strong is defined by the number of houses that have been damaged. Thus,
those companies offer contracts contingent on statistical states.

2. Those contracts are usually offered by insurance companies who know the risk.
3. See the discussion of Chichilnisky and Heal [1992].
4. The assumptions made in this article and in Chichilnisky and Heal [1992, 1998] also guarantee the existence

of a contingent-market equilibrium (see Aliprantis, Brown, and Burkinshaw [1990]).
5. Without loss of generality, this set is assumed to be the same for all consumers.
6. Note that|R| is a polynomial in H , whereas|Ä| increasesexponentiallywith H . This point will be of

importance later on, when we need financial assets for each state.
7. This assumption is not explicitly mentioned by Chichilnisky and Heal but seems to be required for their proofs

also.
8. There should be no confusion by using the same symbol for the functionr (·) and a statistical stater ∈ R.
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9. Note also that̂5h
r 6= 5h

r whenever|Är | > 1.
10. Chichilnisky and Heal only assume strict quasi-concavity, but in order for their proof to go through, they

really need strict concavity. They make the additional assumption that indifference surfaces do not cut into
the boundary. This assumption, however, is only required if strict monotonicity or strict concavity do not
hold on the boundary of theIRL+. Therefore, under the assumptions made above, it is superfluous.

11. See Aliprantis, Brown, and Burkinshaw [1990], Theorem 1.3.8 on page 24.
12. Restricting our attention to pure Arrow securities simplifies notation, but there is no loss of generality.
13. mh∗

sr is the difference between the actual value of the excess demand if the statistical state isr and the individual
states and the expected value of the excess demand for the stater .

14. In order to avoid confusion, we continue to use our notation.
15. The Anonymity Assumption is made on page 280 in the fourth paragraph of Chichilnisky and Heal [1998].
16. The additional separability assumption in the latter article is not really needed.
17. By a slight, though rather technical, modification ofUh in a neighborhood of the boundary, one could achieve

thatUh exactly meets Assumption 2. Since the consumers’ demand—all consumers having strictly positive
endowments—would never be on the boundary ofIR8+ anyway, this modification is not necessary.

18. Chichilnisky and Heal [1992] start to write down utility functions with subscripts indicating the individual
state. Later, they drop the subscripts. In Chichilnisky and Heal [1998], the utility functions arenot state
dependent.

19. By Assumption 2 there is a unique maximizer.
20. In this case there is even a unique maximizer. See (13).
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