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Abstract

The main tools and concepts of financial and actuarial theory are designed to handle standard, or even small risks.
The aim of this paper is to reconsider some selected financial problems, in a setup including infrequent extreme
risks. We first consider investors maximizing the expected utility function of their future wealth, and we establish
the necessary and sufficient conditions on the utility function to ensure the existence of a non degenerate demand
for assets with extreme risks. This new class of utility functions, called LIRA, does not contain the classical HARA
and CARA utility functions, which are not adequate in this framework. Then we discuss the corresponding asset
supply-demand equilibrium model.
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1. Introduction

The main tools and concepts of financial theory have been designed for standard, or even
small risks. For instance the definitions of the absolute or relative risk aversion coefficients
are derived from an expansion of the expected utility in a neighbourhood of the certainty hy-
pothesis (Arrow [1965]); the mean-variance approach is also justified by local risk arguments
(Samuelson [1970]; Levy and Markowitz [1979]; Pulley [1981]; Epstein [1985]; Kimball
[1990]); the limiting analysis of the binomial tree (Cox, Ross and Rubinstein [1979]) and the
derivation of the standard Black-Scholes formula (Black and Scholes [1973]) also assume
the absence of extreme risks in a small time interval. The aim of this note is to reconsider
some standard financial problems, in the presence of infrequent extreme risks. In a two state
framework such a pure infrequent risky claim is defined by:

Y =



1 + r + u, with probability 1 − p,

1 + r + d

p
, with probability p,

where r is the riskfree interest rate, u (up) is positive, d (down) is negative, and the probability
p is tending to zero. The risky claim has an expectation given by: EY = 1+r+(1−p)u+d ∼
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1 + r + u + d for small p, and a variance V Y = (1 − p)u2 + d2

p − ((1 − p)u + d)2, which
tends to infinity when p tends to zero.

In Section 2, we consider investors maximizing the expected utility of their future wealth,
and building a portfolio based on a riskfree asset and a risky asset whose returns contain
infrequent extreme values. We establish the necessary and sufficient conditions on the utility
function ensuring the existence of a non degenerate individual demand (or supply) in the
risky asset. This class of utility functions is studied in Section 3; we derive a representation
theorem for these utility functions, provide an interpretation of the expected utility as an
average of put option prices and discuss several examples of LIRA utility functions. In
Section 4, we analyse the corresponding equilibrium model and discuss the equilibrium
price distributions.

2. The individual demand or supply for infrequent extreme risks

The aim of this section is to derive a necessary and sufficient condition on the utility function
ensuring a non degenerate demand (or supply) for infrequent extreme risks. This condition,
which is not satisfied by standard utility functions, should be introduced for the analysis of
the investors’ behaviour or the equilibrium condition on markets with extreme risks, such
as the junk bonds or the reinsurance markets. To simplify the derivation of the condition
we focus on dichotomous infrequent extreme risks, and discuss at the end of the section the
case of continuous risks.

2.1. The restrictions on the utility function

Let us consider a market with a riskfree asset and an asset featuring large risk with a small
probability. At the initial investment date the prices are normalized to one. The payoffs at
the next date are 1 + r , where r is the riskfree rate, and1:

Y =



1 + r + u, with probability 1 − p,

1 + r + d

p
, with probability p,

(2.1)

where u > 0, d < 0.

Let us now consider an individual investor with an initial budget w, and a utility function
U , which is defined on the real line, increasing, concave and differentiable. The individual
investor selects a portfolio satisfying:

{
max
θo,θ

EU [θo(1 + r ) + θY ]

s.t. θo + θ = w.
(2.2)

Taking into account the budget constraint, the maximisation can be performed with
respect to the allocation in the risky asset only:

max
θ

EU [w(1 + r ) + θ (Y − (1 + r ))]. (2.3)
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The optimization becomes:

max
θ

(1 − p)U [w(1 + r ) + θu] + pU

[
w(1 + r ) + θ

d

p

]
. (2.4)

The propositions below provide restrictions ensuring a finite solution of the optimization
for a fixed p and for p tending to zero, respectively. These propositions involve the limiting
values U ′(+∞) and U ′(−∞). These values are well defined. U ′(+∞) is always finite and
nonnegative, whereas U ′(−∞) can be infinite.

Proposition 2.1: The optimization in (2.4) admits a finite solution θp(w, u, d, r ) for p
sufficiently small, if and only if:

U ′(−∞)

U ′(+∞)
> −d

u
>

U ′(+∞)

U ′(−∞)
.

Proof. The values of the derivative of the objective function for θ = ±∞ are:

u(1 − p)U ′(−∞) + dU ′(+∞), for θ = −∞,

u(1 − p)U ′(+∞) + dU ′(−∞), for θ = +∞.

The objective function is concave with respect to θ . Therefore the problem admits a finite
solution iff the derivatives at −∞ and +∞ are positive and negative, respectively. This
provides the inequality restrictions in Proposition 2.1.

Note that the previous conditions are satisfied for any levels u and d if U ′(+∞) = 0.

We are also interested in the limiting behaviour of the optimal risky allocation θp, when
p tends to zero.

Proposition 2.2: Under the condition of Proposition 2.1, a necessary condition for θp to
have a strictly positive finite limit, when p tends to zero, is: U ′(−∞) = limW→−∞ U ′(W ) <

+∞.

Proof. see the Appendix.

The necessary condition involves only the utility function and neither the initial budget,
nor the riskfree rate, nor the up and down values of the risky return.

2.2. The individual demand (or supply)

The individual demand (or supply) is given by the proposition below, proved in the
Appendix.

Proposition 2.3: Under the conditions of Propositions 2.1–2.2, θp always converges to
a finite limit θ∗. Moreover we have:
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(i) θ∗ < 0, that is a supply, if:

U ′(−∞)

U ′(+∞)
> −d

u
>

U ′[w(1 + r )]

U ′(+∞)
,

and then:

θ∗ = 1

u

{
U ′−1

[
−d

u
U ′(+∞)

]
− w(1 + r )

}
.

(ii) θ∗ = 0, that is a riskfree portfolio, if:

U ′[w(1 + r )]

U ′(+∞)
> −d

u
>

U ′[w(1 + r )]

U ′(−∞)
.

(iii) θ∗ > 0, that is a demand, if:

U ′[w(1 + r )]

U ′(−∞)
> −d

u
>

U ′(+∞)

U ′(−∞)
,

and then:

θ∗ = 1

u

{
U ′−1

[
−d

u
U ′(−∞)

]
− w(1 + r )

}
.

When the initial budget varies, we get different patterns of the demand (supply) function
according to the location of the expected risky return with respect to the riskfree rate for
small p. First note that:

U ′(−∞)

U ′(+∞)
> 1,

U ′[w(1 + r )]

U ′(+∞)
> 1,

U ′[w(1 + r )]

U ′(−∞)
< 1.

(1) If u + d > 0, i.e. if the expected risky return is larger than the riskfree rate, the limiting
allocation is non negative, and is strictly positive if the initial budget is small enough:

w(1 + r ) < U ′−1

[
−d

u
U ′(−∞)

]
.

(2) If u +d < 0, i.e. if the expected risky return is smaller than the riskfree rate, the limiting
allocation is non positive, and the investor has a strict short position in the risky asset, if the
initial budget is sufficiently large:

w(1 + r ) > U ′−1

[
−d

u
U ′(+∞)

]
.

Thus the demand (or the supply) is a piecewise linear function of the initial budget.
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2.3. Continuous infrequent extreme risks

We have considered above dichotomous “up” and “down” risks. The approach is easily
extended to multivariate continuous risks by considering stochastic price movements “u”
and “d” within regimes. More precisely the payoffs of the risky assets for the period [t, t +1]
are:

y j,t+1 = p j,t+1

p j,t
− 1 = r + u j,t , with probability 1 − p,

= r + d j,t

p
, with probability p,

for j = 1, . . . , n where ut = (u1,t , . . . , un,t )′, dt = (d1,t , . . . , dn,t )′ are independent random
vectors with stationary distributions:

ut ∼ f0(u), dt ∼ f1(d), (say).

For instance let us consider the univariate case. The optimization problem (2.4) becomes:

max
θ

(1 − p)E0U [w(1 + r ) + θu] + pE1U

[
w(1 + r ) + θ

d

p

]
,

where E0 and E1 denotes the expectations with respect to the distributions f0 and f1,
respectively.

The values of the derivative of the objective function for θ = −∞ and θ = +∞ become,
respectively:

(1 − p){E0(u1lu>0)U ′(−∞) + E0(u1lu<0)U ′(+∞)}
+ {E1(d1ld<0)U ′(+∞) + E1(d1ld>0)U ′(−∞)},

and

(1 − p){E0(u1lu>0)U ′(+∞) + E0(u1lu<0)U ′(−∞)}
+ E1(d1ld<0)U ′(−∞) + E1(d1ld>0)U ′(+∞)}.

Thus there is a finite solution (Proposition 2.1) if and only if.

U ′(−∞)

U ′(+∞)
> − E1(d1ld<0) + E0(u1lu<0)

E1(d1ld>0) + E0(u1lu>0)
>

U ′(+∞)

U ′(−∞)
.

The results are similar to Section 2.1 after replacing u by E1(d1ld>0) + E0(u1lu>0) and d
by E1(d1ld<0) + E0(u1lu<0).
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Finally note that in a multivariate framework infrequent extreme risks can exist for some
portfolios and not for some others. As an example let us consider a mixture of gaussian
distributions where ut ∼ N [mo, �o], dt ∼ N [0, �1]. In this framework the payoffs follow
a mixture of gaussian distributions:

r (1, . . . , 1)′ + (1 − p)N [mo, �o] + pN

[
0,

�1

p2

]
.

The assets are risky whenever V Y = (1 − p)�o + �1
p + p(1 − p)mom ′

o has full rank.
But the volatility matrix �1 alone is not necessarily of full rank. In this case the portfolio
allocations which do not include infrequent extreme risks correspond to the kernel of the
volatility matrix �1.

3. The LIRA utility functions

In this subsection we present the properties of the class of utility functions satisfying the
condition of Proposition 2.2, that is U ′(−∞) < ∞. Since the existence of U ′ at −∞ is
equivalent to the integrability of the absolute risk aversion −U ′′/U ′ at −∞, this class will
be called LIRA, for Left Integrable (Absolute) Risk Aversion. The integrability condition
implies that the absolute risk aversion tends to zero at −∞, that is the investor is risk neutral
with respect to different very large losses.2

The class of LIRA utility functions does not include the standard utilities with Hyperbolic
Absolute Risk Aversion (HARA) or Constant Absolute Risk Aversion (CARA). Indeed
for HARA functions the demand functions are affine in w (Cass and Stiglitz [1970]). In
particular a nondegenerate demand (supply) for extreme risks is not compatible with a
mutual fund separation theorem.

3.1. A representation theorem

Proposition 3.1: U is a LIRA utility function if and only if it can be written as:

U (W ) = b
∫ W

S(x) dx + aW + c, a ≥ 0, b > 0,

where S = 1 − G is a survivor function associated with a probability distribution on IR
with c.d.f. G.

Proof. We have:

U ′(W ) = U ′(+∞) + [U ′(−∞) − U ′(+∞)]
U ′(W ) − U ′(+∞)

U ′(−∞) − U ′(+∞)
,

where

S(W ) = U ′(W ) − U ′(+∞)

U ′(−∞) − U ′(+∞)

is a decreasing function, varying between 1 and 0. The result follows by integration.
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Therefore it is equivalent to select a subclass of LIRA utility functions, or to select a
subfamily of probability distributions.

Note that the proof requires only the existence of the first order derivative of the utility
function and its finite value at −∞. Therefore the associated probability distribution can be
either discrete, or continuous. When the distribution is continuous on a subinterval of IR,
with a continuous density g, then the second order derivative of the utility function exists
and is equal to −bg.

When a = 0 the link between the utility function and the probability distribution can
alternatively be written in terms of the absolute risk aversion coefficient when the associated
distribution is continuous. Indeed the risk aversion coefficient: A(w) = −U ′′(w)/U ′(w) =
g(w)/S(w) coincides with the so-called hazard function of the probability distribution.

The previous representation may simplify the derivation of the individual demands. The
utility function is equal to:

∫ W S(x) dx + αW, α ≥ 0, up to a positive multiplicative factor
and the necessary condition of Proposition 2.1 becomes:

1 + α

α
> −d

u
>

α

1 + α
.

In the case of a positive risk premium for the risky asset (case u + d > 0), the limiting
allocation is strictly positive if and only if:

w(1 + r ) < S−1

[−α(u + d) − d

u

]
,

and is equal to:

θ∗ = 1

u

{
S−1

[−α(u + d) − d

u

]
− w(1 + r )

}
.

When u + d < 0, the limiting allocation is strictly negative, if and only if:

w(1 + r ) > S−1

[−α(u + d)

u

]
,

and is equal to:

θ∗ = 1

u

{
S−1

[−α(u + d)

u

]
− w(1 + r )

}
.

3.2. Interpretation in terms of option prices

This interpretation is based on the representation of LIRA utility functions given
below.
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Proposition 3.2: A LIRA utility function can be written as:

U (W ) = −bEX [(W − X )−] + aW + d, a ≥ 0, b > 0,

where X denotes a random variable with distribution G.

Proof. We have:

EX [(W − X )−] = −
∫ +∞

W
(W − x)g(x) dx

=
∫ +∞

W
(W − x) d S(x)

= [(W − x)S(x)]+∞
W +

∫ +∞

W
S(x) dx

= const. −
∫ W

S(x) dx .

The decomposition formula given above has a simple interpretation, when the expected
utility is considered:

EU (W ) = −bEW EX [(W − X )−] + aEW + d

= −bEX EW [(W − X )−] + aEW + d, (3.1)

EU (W ) = −bEXπX (W ) + aπ (W ) + d,

where π (W ) is the pure premium associated with the wealth W , and πX (W ) the pure
premium associated with the put based on the wealth W with strike X , that is the expected
payoff evaluated with the historical probability (not with the risk neutral one). Alternatively
πX (W ) is the average excess of loss in a reinsurance context with retention X . Under these
interpretations the probability G provides the weights on the strikes used to aggregate the
put prices (resp. the excess loss).3

The above interpretation corresponds to standard practice of comparing risks of two
assets. Indeed risk can be evaluated in two different ways. In the historical approach the
investor observes the series of past payoffs and infers from this analysis an estimated
conditional distribution of future payoffs. The first asset is considered more risky than the
second one if its estimated conditional distribution stochastically dominates the estimated
conditional distribution of the second asset. In the cross-sectional approach the investor
compares the prices of the derivatives written on these assets. The first asset is more risky
if the derivative prices (as function of the moneyness strike) are higher. The interpretation
of the expected LIRA utility function corresponds to this cross-sectional approach, after
replacing the risk neutral probability by the historical one. It provides a link between the
historical and cross-sectional approaches.

The quantity EXπX (W ) is an absolute measure of risk related with some measures used on
the market or discussed in the theoretical literature. Indeed this quantity can also be written
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as EP (W −), where the probability P is the mixture of the historical probability drifted
by X . Thus it can be interpreted as the expected loss associated with a scenario on future
wealth, which modifies the historical probability by a random drift. The idea of expected loss
computed for different scenarios is typically used on the Chicago Mercantile Exchange for
determining the margin on futures. This system, called SPAN (Standard Portfolio Analysis
of Risk), computes the maximum loss over 16 scenarios. The same type of computation has
also been derived from an axiomatic definition of risk measures (see Artzner et al. [1996]).
However the risk measure does not satisfy the axioms of homogeneity and subadditivity
introduced in Kijima and Ohnishi [1993], Pedersen and Satchell [1998] and used by Artzner
et al. [1999] to derive the so-called coherent risk measures. This is easily understood since
all derivations performed above assume a given initial wealth, which does not allow for
increasing the size of the portfolio.

Note finally that the restricted set of LIRA utility functions is sufficient to generate second
order stochastic dominance. Indeed a random wealth W1 is preferred to wealth Wo for any
expected LIRA utility function if and only if: EW1 ≥ EW0 and πX (W1) ≤ πX (W0), ∀X .
By a standard result (see e.g. Rothschild and Stiglitz [1970], Goovaerts, De Vylder, and
Haezendonck [1984]), this condition is equivalent to the second order monotonic stochastic
dominance (also called stop-loss ordering in insurance theory). Thus the set of LIRA utility
functions generates second order stochastic dominance. By comparison it is known that
the set of CARA utility functions does not generate this order. It is due to the difficulty to
capture the extreme risk phenomena with the restricted class of CARA utilities.

3.3. Examples

Examples of LIRA utility functions can easily be derived by considering standard distri-
butions for the strike. The distributions below are continuous, which ensures the existence
of the first order derivative of the utility function. The second order derivative of the utility
(and the risk aversion coefficient) exists if the associated probability density function is
continuous.

Example 3.1 (Gaussian weights): Let us consider the utility function:

U (W ) = −bW�(W ) − bϕ(W ) + (a + b)W + c,

where ϕ and � are the pdf and the cdf of the standard normal. The marginal utility is:

U ′(W ) = a + b − b�(W ).

Thus U ′(−∞) = a+b and the associated distribution is the standard normal distribution.
The case of non standard normal distributions is easily deduced by applying an affine
transformation to W .

It is interesting to note that a utility function with asymmetric properties concerning the
preference for extreme risk can be derived from a symmetric distribution of the strike. This
is a consequence of the asymmetric payoffs of put derivatives.
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Example 3.2 (Double exponential weights): The utility function is:

U (W ) =
(

1

α1
+ 1

α2

)−1 b

α2
2

[1 − exp −α2(W − d)] + aW + c, if W > d,

= −
(

1

α1
+ 1

α2

)−1 b

α2
1

exp α1(W − d) +
(

1

α1
+ 1

α2

)−1 b

α2
1

+ b(W − d) + aW + c, if W < d,

where α1, α2 are positive parameters. The marginal utility is:

U ′(W ) =
(

1

α1
+ 1

α2

)−1 b

α2
exp − α2(W − d) + a, if W > d,

= −
(

1

α1
+ 1

α2

)−1 b

α1
exp + α1(W − d) + b + a, if W < d.

It is a LIRA function associated with a double exponential distribution with survivor
function:

S(W ) =
(

1

α1
+ 1

α2

)−1 [
1

α2
exp −α2(W − d)1lW>d

+
[

1

α1
+ 1

α2
− 1

α1
exp α1(W − d)]1lW<d

]
.

d is the mode of this distribution, whereas α1 and α2 are measures of left and right tail
magnitudes, respectively. For a = 0 the utility function corresponds to a CARA utility
function, when W is sufficiently large, and is modified for small values of W to ensure
the left integrability of risk aversion; the absolute risk aversion is constant equal to α2 for
W > d , but decreases to zero with an exponential decay when W tends to −∞.

Example 3.3 (Weights with left bounded support): If we select a probability distribution
with a left bounded support (γ, ∞), say, the associated utility functions are:

U (W ) = b
∫ W

γ

S(x) dx + aW + c

= b(W − γ ) + aW + c, if W < γ,

= b
∫ W

γ

S(x) dx + aW + c, if W ≥ γ,

since S(W ) = 1, if W < γ . The associated utility function is linear affine for W sufficiently
small. The parameter γ represents a wealth target at which the pattern of risk aversion
changes (see the discussion of this point in the survey by Fishburn and Kochenberger
[1979], or in Pedersen [1999]).
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For instance if the probability distribution is uniform on the interval [γ, δ], say, we get:

S(W ) = 1, if W ≤ γ,

= δ − W

δ − γ
, if γ ≤ W ≤ δ,

= 0, if W ≥ δ.

The associated utility function is:

U (W ) = b(W − γ ) + aW + c, if W ≤ γ

= −b

2

(δ − W )

δ − γ

2

+ b

2
(δ − γ ) + aW + c, if γ ≤ W ≤ δ,

= b

2
(δ − γ ) + aW + c, if W ≥ δ.

It corresponds to a portion of quadratic function extended by two straight lines. The affine
restriction on the right side ensures that the function is increasing, which is not naturally
satisfied by a quadratic utility. The affine restriction on the left side ensures nondegenerate
demand for extreme risks.

Of course the quadratic assumption can be weakened by considering the survivor function:

S(W ) = 1, if W ≤ γ,

= (δ − W )α

(δ − γ )α
, if γ ≤ W ≤ δ,

= 0, if W ≥ δ.

The associated utility function becomes:

U (W ) = b(W − γ ) + aW + c, if W ≤ γ,

= − b(δ − W )α+1

(α + 1)(δ − γ )α
+ b

α + 1
(δ − γ ) + aW + c, if γ ≤ W ≤ δ,

= b

(α + 1)
(δ − γ ) + aW + c, if W ≥ δ,

which corresponds to an earlier suggestion by Fishburn [1974], or Pedersen [1999]. When
α varies, the slopes of the two limiting straight lines stay the same, whereas the curvature of
the nonlinear portion relying these lines is modified. In the limiting case α = 0 the utility
function reduces to a concave piecewise linear function with three regimes.

4. Equilibrium model

The LIRA utility functions can be used to get extensions of the standard CAPM equilibrium
model. As usual there exists an infinity of equilibrium price distributions compatible with
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the rational expectation equilibrium restriction. In Section 4.1 we discuss the existence of an
equilibrium distribution featuring binary infrequent extreme risk. Then in the next section
we study the skewness properties of the equilibrium distributions. By considering a simple
example, we show that there can coexist a gaussian equilibrium price distribution, which
is in particular symmetric around its mean, and an associated equilibrium pricing kernel
which is skewed.

4.1. The basic model

Let us assume a continuum of investors with the same utility functionU (W ) = ∫ W S(x) dx +
αW, α ≥ 0, and a perfect knowledge of the distribution of the risky asset payoff and of the
riskfree interest rate, but with different initial budgets w∗ = w(1 + r ), whose distribution
is µ. We have seen in Section 2.2 that all these individual investors are on the same side
of the market (for instance the demand side in case 1); this situation also occurs in the
standard CAPM based on mean-variance behaviours (Sharpe [1964], Lintner [1965]). Let
us consider the demand case, introduce an exogenous supply of the risky asset θS , say, and
search for an equilibrium condition compatible with dichotomous infrequent extreme risks.
This condition is:

θS = ξ (u, d), (4.1)

where

ξ (u, d) = 1

u
Ew∗

[{
S−1

[−α(u + d) − d

u

]
− w∗

}
1l

w∗<S−1
[

−α(u+d)−d
u

]] ,

is the aggregate demand function. Note that at equilibrium, we have necessarily u + d > 0.
In the context of infrequent extreme risks the aggregate demand cannot be interpreted

as the demand of a representative investor with initial wealth Ew∗. Indeed, whenever the
support of the distribution of initial budgets includes the limiting value S−1[−α(u+d)−d

u ], the
aggregate demand does not depends on µ through Ew∗ only.

It is important to note that the initial price of the risky asset has been normalized to
one, and that the asset is characterized by u and d. In the standard equilibrium theory, the
asset design is determined by a single parameter, usually the initial price. In our framework
several parameterizations can be introduced. For instance we can consider that d (resp. u)
is fixed and the value u (resp. d) is modified to reach the equilibrium. We can also change
the up and down movements by a scale parameter u = λuo, d = λdo, where uo, do are fixed
and look for the equilibrium value of λ. The existence and properties of the equilibria are
deduced from the properties of the aggregate demand function.

Proposition 4.1: The aggregate demand function is:
(i) decreasing in −d;

(ii) homogenous of degree −1 with respect to u, d;
(iii) in particular there exists a unique equilibrium in either −d, or λ.
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Proof.

(i) The individual demand functions are increasing in d and the first property is an imme-
diate consequence by integrating.

(ii) follows immediately.
(iii) let us consider the set of all possible values of ξ , when d varies. We know that:

1 > −d
u > α

1+α
because of Proposition 2.1 and the condition for positive demand.

Therefore:

1 >
−α(u + d) − d

u
> 0.

Let us denote by do = −u α
1+α

and d1 = −u the values of d for which the two limiting
values 0 and 1 are reached. We have ξ (u, do) = +∞, ξ (u, d1) = 0, and the image of ξ

is the set of positive real numbers. We deduce the existence of an equilibrium in d and
its uniqueness is a consequence of part (i). Moreover the existence and uniqueness of the
equilibrium in λ immediately follows from ξ (u0λ, d0λ) = λ−1ξ (u0, d0).

If we no longer assume that the price of the risky asset at t is one, but pt , and if we
assume that the payoff of the risky asset at t + 1 is (1 + r + u)pt with probability 1 − p
and (1 + r + d

p )pt with probability p, the aggregate demand is given by (4.1) in which u
and d are replaced respectively by upt and dpt ; therefore, the existence and the uniqueness
of the equilibrium in pt follows directly from the one in λ.

4.2. Skewness of historical and risk neutral equilibrium price distributions

For expository purpose let us discuss the skewness properties in a special framework of one
investor, with initial wealth w and utility function associated with the point mass at η:

U (W ) =
∫ W

S(x) dx + αW,

where S(W ) = 1lW<η.
We have:

U (W ) =
∫ W

η

S(x) dx + αW

U (W ) = W − η + αW, if W ≤ η,

= αW, if W > η,

and U is piecewise linear.
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Denoting by pot and pt the price of the riskless and risky assets at time t , the optimization
problem is:

Max
θ0,θ

EtU (θ0 p0,t+1 + θpt+1)

s.t. : θ0 pot + θpt = w,

or, using p0,t+1 = (1 + r )po,t and w∗ = (1 + r )w

Max
θ

EtU [θ (pt+1 − (1 + r )pt ) + w∗].

The first order condition of the optimization problem is:

Et [(pt+1 − (1 + r )pt )
[
1lw∗+θ (pt+1−(1+r )pt )<η + α

] = 0. (4.2)

Denoting yt+1 = pt+1 − (1 + r )pt , it is easily checked that, if Et yt+1 > 0, yt+1 has
a continuous conditional distribution and, if Et yt+11lyt+1<0 + aEt yt+1 < 0, Eq. (4.2) has a
unique positive solution in θ .

Thus for a positive exogenous supply θS the equilibrium condition becomes:

Et

{
yt+11lyt+1<

η−w∗
θS

+ α
]

= 0. (4.3)

This equilibrium condition has a simple interpretation in terms of the risk return relation-
ship, when α > 0. Indeed we get:

Et pt+1 = (1 + r )pt − 1

α
Et

[
(pt+1 − (1 + r )pt )1lpt+1−(1+r )pt <

η−w∗
θS

]
. (4.4)

The second component of the right hand side provides the risk premium, where the
natural associated measure of risk is close to the standard Tail Value at Risk, introduced for
management and control of extreme risks.

Let us now consider the equilibrium price distribution in the limiting case α = 0. Con-
dition (4.4) implies:

Et

[
yt+11lyt+1<

η−w∗
θS

]
= 0, (4.5)

with m > 0 and η > w∗. By assuming yt+1 = σ zt+1, where zt+1 ∼ N [m, 1], it is easily
checked that the function

σ → Et

(
zt+11l

σ zt+1<
η−w∗

θS

)

is decreasing and admits a zero. Therefore there exists a gaussian equilibrium price distri-
bution and thus the choice of a LIRA utility function can be compatible with a symmetric
price distribution.
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However let us now consider the associated pricing distribution (risk neutral distribution).
From (4.3) applied with α = 0, we deduce:

pt = 1

1 + r
Et

[
pt+11lpt+1−(1+r )pt <

η−w∗
θS

]/
Et

[
1lpt+1−(1+r )pt <

η−w∗
θS

]
,

and the expression of the stochastic discount factor for the period (t, t + 1):

Mt,t+1 = 1

1 + r
1lpt+1<

η−w∗
θS

+(1+r )pt
/Et

(
pt+1 <

η − w∗

θS
+ (1 + r )pt

)
. (4.6)

Thus the associated equilibrium risk neutral distributions are such that:

Qt [pt+1 < k] = Et
[
(1 + r )Mt,t+11lpt+1<k

]
= Pt

[
pt+1 < k|pt+1 <

η − w∗

θS
+ (1 + r )pt

]
, (4.7)

where Qt (resp. Pt ) denotes the risk neutral (resp. historical) distribution. Therefore the
support of any risk neutral equilibrium distribution is included in [−∞,

η−w∗
θS

+ (1 + r )pt ],
and all these risk neutral distributions are left skewed, even if some historical equilibrium
price distribution are not (as the gaussian distribution exhibited above).

5. Concluding remarks

We have introduced a notion of infrequent extreme risks, where a large loss on an asset
occurs, but with a small probability. When investors want to include the corresponding risky
assets in their portfolio, their demand (or supply) is non degenerate under some restrictions
on their utility functions, leading to the so-called LIRA utility functions. A representation
theorem allows for an interpretation of the associated expected utility as an average of
pure premia of European puts. Finally, we discuss the existence and characteristics of the
equilibria in the presence of infrequent extreme risks.

Appendix 1: Necessary and sufficient conditions for the existence of demands and
supplies for extreme risks

(i) Proof of Proposition 2.2

Under the condition of Proposition 2.1, θp satisfies the first order condition:

u(1 − p)U ′[w(1 + r ) + θpu] + dU ′
[
w(1 + r ) + θp

d

p

]
= 0.
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Let us denote by θ∗ the positive finite limit of θp. The limit of U ′[w(1+ r ) + θp
d
p ] exists,

when p tends to zero, and is equal to − u
d U ′[w(1 + r ) + θ∗u]. The result follows, since

limp→0 U ′[w(1 + r ) + θp
d
p ] = U ′(−∞).

(ii) Proof of Proposition 2.3

When p tends to zero, the first order derivative of the expected utility function with respect
to θ, θ 	= 0, tends to:

lim
p→0

{
u(1 − p)U ′[w(1 + r ) + θu] + dU ′

[
w(1 + r ) + θ

d

p

]}
= uU ′[w(1 + r ) + θu] + d[U ′(−∞)1lθ>0 + U ′(+∞)1lθ<0].

This function is still decreasing with respect to θ , but is discontinuous at θ = 0. It takes
the following values:

θ −∞ 0− 0+ +∞

Value of the uU ′(−∞) uU ′[w(1 + r )] uU ′[w(1 + r )] uU ′(+∞)
derivative + dU ′(+∞) + dU ′(+∞) + dU ′(−∞) +dU ′(−∞)

Let us distinguish several cases according to the location of − d
u with respect to the ratios:

U ′(−∞)

U ′(+∞)
>

U ′[w(1 + r )]

U ′[+∞]
>

U ′[w(1 + r )]

U ′(−∞)
>

U ′(+∞)

U ′(−∞)
.

(a) The condition of Proposition 2.1: U ′(−∞)
U ′(+∞) > − d

u > U ′(+∞)
U ′(−∞) ensures that θp is in a

compact interval for p sufficiently small and we deduce the convergence to a unique limit
θ∗ because of the concavity of the objective function.

(b) Moreover we have:

θ∗ < 0, if
U ′(−∞)

U ′(+∞)
> −d

u
>

U ′[w(1 + r )]

U ′(+∞)
,

θ∗ = 0, if
U ′[w(1 + r )]

U ′(+∞)
> −d

u
>

U ′[w(1 + r )]

U ′(−∞)
,

θ∗ > 0, if
U ′[w(1 + r )]

U ′(−∞)
> −d

u
>

U ′(+∞)

U ′(−∞)
.

Notes

1. Equivalently we can consider that Y is the relative asset price modification between t and t +1 : Y = pt+1/pt ,
say.
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2. It is interesting to compare this result with the discussion in Rabin [2000] on the links between the aversion
for small and large risks. The fact that an expected utility maximizer, who “turns down gambles with loss $100
or gain $110, each with 50% probability, will also turn down 50–50 bets of losing $20,000 or gaining any
sum”, is due to the fixed 50–50 probabilities used to define the bets. When the potential loss increases, the loss
probability has to decrease to stay on the expected utility indifference curve. This is what is done in the present
paper.

3. The expected excess loss is a classical risk measure (see e.g. Stone [1973], Bawa and Lindenberg [1977]).
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